Альтернативные данные в кредитном скоринге — что работает для украинских МФО

  • процесс: на базе всех интересов (лайков страниц) одной соцсети строится 100-мерное пространство, в котором каждый человек представляется точкой со своими координатами. Алгоритмы машинного обучения делают “магию” и позволяют сформировать пространство таким образом, чтобы похожие по интересам люди лежали рядом (все ЗОЖники — в одной части пространства, а бодипозитивные — в другой);
  • результат: миллионы интересов (лайков страниц) трансформировались в 100-мерный вектор, который уже легко добавить в скоринговую модель. Точность модели, построенной таким образом только на данных соцсетей — 0.2–0.5 Джини при хит-рейте в 50–70%. При чем для заемщиков без кредитной истории результаты часто лучше, чем для людей, у которых она есть.

Модель, построенная только на данных соцсетей, дает 0.2–0.5 Джини при хит-рейте в 50–70%.

Еще один интересный инсайт, который мы обнаружили — это усреднение информации по друзьям человека. Как оказалось, если построить одну модель по человеку, а вторую — как среднее по его друзьям, то такие модели будут иметь одинаковую точность. Что позволяет анализировать слабо заполненные профайлы.

--

--

Inventor, founder @Artellence. Top topics: artificial intelligence, big data, open data, fintech, public sector, politics, technologies of the future.

Love podcasts or audiobooks? Learn on the go with our new app.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Volodymyr Lozovyi

Volodymyr Lozovyi

Inventor, founder @Artellence. Top topics: artificial intelligence, big data, open data, fintech, public sector, politics, technologies of the future.